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The simplest hierarchical vision of space-time is to admit the existence of two separate levels, so 
that the spatial and temporal coordinates of the higher level would be constructed from the lower-level 
space-time, possibly in combination with some dynamic features. A program like that has been 
successfully accomplished in quantum physics, where the lower-level configuration space is said to be 
purely virtual, while any observables are associated with Hermitian operators acting upon the space of 
distributions defined on that inner space. However, one could also consider hierarchical constructs in 
classical physics. In this case, higher-level quantities are to be constructed in the same manner, as 
parameterized averages of some functions defined on the lower-level space. This not obvious, why a 
physicist should be interested in theories like that; however, nothing prevents us from playing with 
imaginary worlds just for fun. In this self-entertainment, we do not need to develop any consistent 
formalism, and all we are interested in is a few simplest tricks demonstrating the possibilities and 
limitations of the approach. 

The main concern about hierarchical space-time is related to velocity definition. In a relativistic 
theory, we bind space to time, but still define velocities in the old 3D way, using the spatial and temporal 
coordinates separately as true physical values. One could wonder if such separated space and time were 
definable as higher-level variables, with the “closely-coupled” relativistic space-time represented by a 
four-dimensional coordinate system of the lower level. 

Well, let us introduce a simplest “global” frame of reference representing the dynamical variables 

as some functions of the four coordinates, with ctx =0 :   
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and introduce the “global” velocity as 
 

dT
dXV

k
k = . (2) 

To simplify things, let us always locally remain within a static, homogeneous and isotropic Minkowski 
space, so that there is no difference between ordinary and covariant derivatives, and the coefficients in 
eq. (1) are mere constants. The quantity V is related to the traditional (coordinate) velocities by a singular 
equation (in the non-degenerate case, known as Möbius transformation, or homography):  
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with the usual notation cv /=β . Indeed, every time that i
i βττ −=0 , the denominator in (2) becomes 

zero, and V may grow to infinity. This, however, may be quite tolerable as long as we do not impose 
any restrictions on the values of V. The obvious asymmetry in respect to the direction of velocity is 
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much more annoying. Why should we have singularity for negative i
i βτ , while a mere change in the 

sign of v is to eliminate any singularities and result in a smooth dependence? On the other hand, if we 
expect that the global velocity V is to change its sign whenever the sign of the local velocity v changes, 

then, for constant coefficients in (1), we have the only possibility 00 =ξ  and 0=iτ ; with an 
appropriate normalization, this is equivalent to V = v. A disappointing result, isn’t it? 

A physicist might simply conclude that the original program is utterly unfeasible and forget about 
it. However, we don’t do any physics here; we are just having fun. So, let us dwell a little bit on the 
details of the problem, assuming that we know nothing about (or just don’t care for) any general 
algebraic results, like the equivalence of PSL(2,C) and SO+(1,3). 

The sign of velocity will change to the opposite in two cases: either the direction of the spatial 
displacement changes independently of the time variable, or the direction of time axis gets reversed with 
spatial coordinates left intact. This transform is essentially non-covariant, just like the very definition of 
velocity. That is, any symmetry in respect to such a transform should be considered on the local level as 
non-physical. In other words, the replacement of local velocity v with its opposite –v in one reference 
frame will result in an asymmetric change in any other, and therefore the original symmetry will 
necessarily be broken.  

Of course, one would not much bother about velocity reversal in very complex systems exhibiting 
quasi-chaotic behavior, or in essentially collective modes on motion. Such systems are essentially 
asymmetric in time (though the question about the locality of this time remains open). However, 
speaking about a free particle in an empty space, one can hardly expect any spatial anisotropy, even 
admitting a nontrivial procedure of speed measurement. Mirror reflection in the coordinate space must 
be equivalent to mirror reflection of motion, as long as we accept the very idea of mapping motion to a 
coordinate system. 

The tricky point is that eq. (3) with constant coefficients does not entirely correspond to the 
original eq. (1) and the symmetries of the global transform (0). Indeed, using the differential 
representation (1) alone in the definition of velocity (3) is only admissible for continuous displacements, 
while any discrete transformations must be treated separately. That is, imposing any discrete symmetries 
on the functions in (0) will result in pseudo-constant coefficients in (1) and (3), so that applying any 
discrete transforms to eq. (3) must be complemented with the corresponding transforms for the 
parameters ξ and τ. This is formally equivalent to considering an extended local velocity: qvv ,→  

with the signs of the “orientation parameter” q correlated with the sign of velocity in mirror reflection. 
Obviously, the resulting algebra will be quite different from mere homography. 

But let the formal aspects to mathematicians. On the intuitive level (which is only acceptable for 
our fun story), we can simply demand that )( µxX k  change their sign under local spatial inversions, 

while )( µxT  be even. From the definition of the coefficients in (1), we immediately obtain that ξ and 
τ0 do not depend on spatial inversions, while ξ0 and τ will change their signs. In this case, the “global” 
velocity defined by eq. (3) is obviously odd in respect to local velocity reversal. 

The varying signs of the coefficients in eq. (1) can be interpreted in different ways. Thus, the local 
coordinates might be treated as “spinors” rather than numbers, with the components corresponding to 
the opposite orientations of the coordinate axes. This idea is physically attractive since it refers to the 
structure of measurement. Alternatively, one could observe that, for a nontrivial definition of “global” 
velocities, eq. (1) must be essentially nonlinear. Probably, the weakest nonlinearity is introduced 
through “oriented” coefficients. Yet another possibility is to introduce higher-order terms in 
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displacements, for instance, using quadratic forms in νµdxdx  rather than linear expansions. In this 

approach, the velocity-like zero-order combinations νµ dxdx /  may also add to the overall nonlinearity. 
So far, this seems to be the most physical version of the functional introduction of “global” velocities, 
like in eq. (0). However, we’ll play with the quasi-linear expansions a little longer, trying to explicitly 
demonstrate the character of dependencies. 

Just for simplicity, let us stick to one-dimensional motion, so that eq. (3) become  
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For 00 =τ , we obtain a simple inversion 
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This result is physically obvious in view of the expansion (1). Indeed, the condition 00 =τ  means that 
thus defined “time” T is effectively a spatial coordinate, and therefore the definition (2) must be inverted, 
to obtain a quantity with the meaning of velocity proper. So, let us assume that 00 ≠τ  in the following. 

To control dimensional values, observe that 1][][ 0 == ξξ  and ]/[][][ 0 xt== ττ . Now, eq. (4) can be 
simplified to give 
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with 
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One could be tempted to further simplify this equation in the non-degenerate case, 00 ≠V , substituting 

βqw = , 0/VVW = , and 0/ qVVa x= , to obtain 
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However, in this form the symmetries of the original definition become obscured, since neither w nor W 
do not change their sign with reverted velocity v (and hence V). For instance, the traditional relativistic 
velocity addition 
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must be rewritten in the w-representation as 
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to preserve the signs of the original velocities, which neither nice nor friendly. However, in the special 
case of 1|| =q  and synchronized spatial inversion over all the reference frames, 21 qq = , eq. (10) 
becomes just like the usual addition law (9), with the signs of w, however, never depending on frame 
orientation: 
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Well, let us look closer at velocity addition in the local and “global” spaces. Starting from eqs. (6) 
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and (9), we obtain the following heavy and cumbrous “global” law: 
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Assuming that spatial inversion acts simultaneously in all the reference frames, we can significantly 
simplify this expression: 
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Though, in general, eq. (13) is still poorly comprehensible, it can be reduced to a more transparent 
relation in our pet special case 1|| =q : 
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which is further rewritten as 
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Noting that spatial inversion, along with q → –q,  will change the signs of 021 ,, VVV , we observe that 
the sign of V will also change to the opposite, as expected. 

An interesting feature of this “addition law” for “global” velocities is that it contains a term with 
the product of the original velocities, and this term cannot be removed with any choice of the transform 
parameters. Moreover, setting 0qVVx −= , we can eliminate the term with the plain addition of velocities 
and get an extraordinary result:  
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That is, relativistic velocity addition in the local space-time is equivalent to the multiplication of 
velocities on the “global” scale! This is where out abstract play with formulas becomes really funny. 

Of course, findings like that would not at all be surprising to a mathematically minded person; 
but here, in out toy world, we haven’t occasionally got any mathematicians, and this only adds pleasure 
to our ingenuous amateur diversion. 

Now, let us go the other way round and assume that 
 

21 VVV +=  (17) 

on the “global” scale. What kind of velocity “addition” are we going to get locally? Once again, the 
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general case is ugly and cumbrous:  
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In the above special case, we get 
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Obviously, this law is very far from anything familiar. In the trivial case of 00 =V , we obtain probably 
the simplest possible form:  
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With 1|| =q , one obtains an “almost relativistic” velocity addition law:  
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Just like the traditional relativistic velocity addition law (9) contains a singularity at 01 21 =+ ββ , the 
rule (22) is singular at 01 21 =− ββ . However, the singularity in relativistic velocity addition can be 
effectively removed if we admit that 1|| ≤β . A similar effect is observed in (22) with q = –1 in the 

standard spatial orientation; indeed, assuming that 1|| ≤β  and setting 12 =β , we get 1=β  regardless 

of 1β . To stress the presence of the upper limit, eq. (22) with q = –1 can be rewritten as 
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where ββ −= 1 . Similarly, the relativistic addition law is presented as 
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The two formulas only differ by the sign in the denominator. For smaller speeds, retaining the quadratic 
terms, we get 
 

2121 2 βββββ −+=  (23.1) 
for our imaginary world, and 
 

21 βββ +=  (24.1) 
for the relativistic law. That is, the relativistic sum is faster gaining relativistic behavior, while the 
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assumption of simple velocity addition on the upper level generally makes lower-level velocities more 
classical. 

For completeness, consider also the case of non-relativistic local addition, 21 βββ += . On the 
global level, in view of eq. (6) and with equal frame orientation, this will result in 
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which resembles eq. (20) and is as far from anything comprehensible. Similarly, for 00 =V , we obtain 
a simpler expression:  
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Defining xVVB /= , we readily get 
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which is a close analog of eq. (21), with the same consequences. 
To conclude, the idea of simple functional introduction of upper-level coordinates and velocities 

does not seem to be too productive in the physical sense, though a few qualitative observations might 
find some counterparts in a more rigorous theory. Physically, the upper levels of hierarchy must appear 
as a result of lower-level dynamics rather than simple kinematic relations.  
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