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Abstract
Cross sections for ionization with excitation and for double excitation in
helium are evaluated in a full second Born calculation. These full second
Born calculations are compared to calculations in the independent electron
approximation, where spatial correlation between the electrons is removed.
Comparison is also made to calculations in the independent time approximation,
where time correlation between the electrons is removed. The two-electron
transitions considered here are caused by interactions with incident protons
and electrons with velocities ranging between 2 and 10 au. Good agreement
is found between our full calculations and experiment, except for the lowest
velocities, where higher Born terms are expected to be significant. Spatial
electron correlation, arising from internal electron–electron interactions, and
time correlation, arising from time ordering of the external interactions, can
both give rise to observable effects. Our method may be used for photon impact.

1. Introduction

Space and time provide a conceptual platform for describing material properties and how
they change. Space and time are remarkably similar. In the classical wave equation x

and vt are mathematically interchangeable. In relativity ict becomes the fourth space-time
dimension. Much of our description involves locating objects or events in space and time,
as in the case of particle trajectories. In quantum mechanics localization is tempered by
uncertainty in both space and time. Often more useful than describing objects and events,
however, is describing connections between objects and events themselves and how they
change. This interconnectedness is often called correlation. Studies of correlation in space
have provided useful understanding about the geometry of multi-particle systems and how
energy is distributed in these systems. In this paper we compare and contrast correlation in
space with correlation in time between electrons in a quantum system perturbed by an external
time-dependent interaction V (t), e.g. an interaction with a charged particle or a photon.
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Spatial correlation in dynamic multi-electron systems has been a focus of study for the
past decade or more (Diaz et al 2000, Kirchner et al 2000, McGuire 1997, Ford and Reading
1996, Stolterfoht 1993). Recently Godunov and McGuire (2001), McGuire et al (2001) have
proposed a method for describing time correlation between electrons. In their development
time correlation is conceptually analogous to spatial correlation. Both are described as a
deviation from an uncorrelated limit represented mathematically as a simple product. However
unlike spatial correlation, time correlation between electrons arises from time ordering of the
external V (t) interactions together with spatial correlation between electrons. Specifically
the Dyson time ordering operator T has been separated into a time independent uncorrelated
term, Tunc, plus a correlated term, Tcor = T − Tunc. In the uncorrelated independent time
approximation (ITA), Tcor is neglected and causality between electrons is lost. The effect of
Tcor is non-local in time. As we demonstrate later, the time correlation term, Tcor, corresponds
to energy-non-conserving terms in the Green function, which are not present in the time
propagation of classical systems. In previous papers (Godunov and McGuire 2001, McGuire
et al 2001) it has been shown that in many cases time correlation between electrons is not
important. In these cases the computer time required decreases by at least two orders of
magnitude. Hence the ITA can be a relatively efficient method for dealing with complex,
dynamic multi-electron systems, as can the independent electron approximation (IEA), where
spatial correlation is removed. On the other hand, examples have been found (McGuire et al
2001) where the effect of time correlation between electrons is large, e.g. more than a factor of
two. These examples may be of interest in developing an understanding of how information
is transmitted quantum mechanically in multi-electron systems.

In this paper we compare the mathematical and conceptual description of correlation
between electrons in space and in time. Both spatial and temporal correlation arise from
non-commutivity in time of the many-body operators for the external interaction V (t). The
IEA, where spatial correlation between electrons is removed, and the ITA, where temporal
correlation between electrons is removed, are compared. In our results section we present
second Born calculations for excitation–ionization and double excitation in helium interacting
with incident protons and electrons. By comparing full second Born calculations with
calculations done in the IEA and the ITA, we are able to assess the influence of both spatial
and temporal correlation. Our results are compared to experiment. Some applications are
considered in our discussion.

2. Theory

2.1. Time evolution

Formally, a scattering experiment may be described by a scattering matrix S, which transforms
initial states of a projectile–target system into the final states of the system, 
E(+∞) =
S
E(−∞). This equation is essentially static, reflecting the stationarity of any spectral
measurement. To account for the system’s dynamics, the S-matrix is assumed to be a limit of
an evolution operator U(t, t0), such that


E(t) = U(t, t0)
E(t0) (1)

for any time values t, t0, with S = lim U(t → +∞, t0 → −∞). Since time evolution
described by the operator U(t, t0) cannot be directly observed, we speak of a virtual evolution.

In this paper the explicit time dependence of an external interaction V (t) is separated from
a time independent term, H0. That is, the total Hamiltonian is given by,

H = H0 + V (t). (2)
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The evolution operator obeys the equation (Goldberger and Watson 1964)

ih̄
∂U(t, t0)

∂t
= VI (t)U(t, t0) (3)

in the interaction representation, with

VI (t) = eiH0tV (t)e−iH0t =
N∑
j

eiH0tVj (t)e
−iH0t =

N∑
j

VIj (t), (4)

corresponding to the interaction of a system of N electrons interacting with an external, time
dependent potential. For example, Vj (t) would be Z/| �R(t)−�rj | for a particle of charge Z with
a trajectory �R(t), or �pj · �A(t) for an external photon field characterized by a vector potential
�A(t). The formal solution for the evolution operator may be found from iteration, namely

(Goldberger and Watson 1964):

U(t, t0) =
∞∑
n=0

(−i)n
∫ t

t0

dtn . . .
∫ t3

t0

dt2

∫ t2

t0

dt1 VI (tn) . . . VI (t2)VI (t1)

≡
∞∑
n=0

(−i)n

n!

∫ t

t0

dtn . . .
∫ t

t0

dt2

∫ t

t0

dt1 T VI (tn) . . . VI (t2)VI (t1)

≡ T exp

(
− i

∫ t

t0

VI (t
′) dt ′

)
. (5)

Here T is the Dyson time ordering operator, which orders the VI (t) with increasing time:

T VI (tn) . . . VI (t2)VI (t1) ≡
∑

P(1,2,...,n)

θ(tn − tn−1) . . . θ(t2 − t1)VI (tn) . . . VI (t2)VI (t1). (6)

Here θ(ti − tj ) is the Heaviside step function. The sum above is taken over all possible
permutations P of the parameters 1, 2, . . . , n. It is worth noting that the only time dependence
occurs in T VI (tn) . . . VI (t2)VI (t1). And chronological ordering of T places a causal-like
constraint on the order of interactions VI (tn) . . . VI (t2)VI (t1).

The idea of time ordering is closely related to the commutativity of operators in the
interaction representation. Since H0 = H0(�x, �p), and V = V (�x), the two operators do not
commute: [H0, V (t)] 
= 0. This is a consequence of the fundamental non-commutativity of
the position and momentum operators for the same particle, inherent in quantum mechanics.
However, this also means that

[
VI (t), VI (t

′)
] 
= 0 for t 
= t ′, even though [VI (t), VI (t)] = 0

(Sunakawa 1977). Hence, Dyson time ordering becomes a non-trivial operation in quantum
time evolution. Indeed, as is shown later, both spatial and temporal correlation in time evolution
occur when various VIj (t) terms in equation (4) fail to commute.

2.2. The Hamiltonian

The total Hamiltonian of the collision system with both the projectile and target is given by

H =
∑
j

H0j +
∑
k 
=j

vc
jk +

∑
j

Vj (t), (7)

where H0j are the one-electron Hamiltonians of the target electrons including the usual
kinematic terms, interaction with the target nucleus, and possibly the terms describing the
electron’s interaction with some average electron correlation potential. The interactions
between the electrons of the target are described with the time-independent terms vc

jk , arising
from the Coulomb interaction 1/rjk , with subtraction of the mean field accounted for in H0j .
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Here Vj (t) describes the time dependent interaction of target electrons with the projectile. We
assume that the eigenstates of

H0 =
∑
j

H0j +
∑
k 
=j

vc
jk (8)

can be determined and form a complete set of basis states, so that, at any time t , the state of
the whole system can be represented by a superposition of eigenstates of H0.

In this paper, we omit antisymmetrization operators in all the expressions for conceptual
simplicity. However, we fully include this electron exchange in our calculations. In fast
collisions exchange effects are often small.

2.2.1. Correlation in space and the IEA. Obtaining the eigenstates of the H0 given by
equation (8) is often a non-trivial task in itself for a many-electron system. Coupling these
multi-electron eigenstates to interactions with a time dependent external interaction is even
more difficult. Therefore approximating the many electron term vc

jk by an average effective one
electron term simplifies the dynamic many-body problem considerably. Without correlation the
Hamiltonian for the N -electron system reduces to a sum of N uncoupled Hamiltonians. This
is the key step in the IEA. The single particle Hamiltonians then commute with each other;
[H0j , H0k] = 0. As a result the target’s electrons can be considered independently of one
another. In the fully correlated system, however, the operators VIj (t) = eiH0tVj (t)e−iH0t are
multi-electron operators due to the vc

jk terms in H0, unlike the Vj (t), which are single electron
scalar functions. As a consequence it is only in the IEA that [H0j , Vk(t)] = δjk[H0k, Vk(t)]
so that the VI (t) reduces to a sum of single particle operators,

VI (t) =
∑
j

eiH0tVj (t)e
−iH0t =

∑
j

eiH0j tVj (t)e
−iH0j t =

∑
j

VIj (t). (9)

Only when spatial electron correlation is removed do theVIj (t
′) commute, with theVIk(t

′).
When these various VIj (t

′) terms commute the evolution operator reduces to a product of
evolution operators for individual electrons,

U(t, t0) = T exp

(
− i

∫ t

t0

( ∑
j

VIj (t
′)
)

dt ′
)

=
∏
j

T exp

(
− i

∫ t

t0

VIj (t
′) dt ′

)

=
∏
j

Uj (t, t0) ≡ UIEA(t, t0). (10)

Now the electrons evolve independently during the collision. This problem may now be easily
solved by the method of separation of variables so that the solution is a simple product of
single electron terms. The transition probability is then also a product of independent-single
electron probabilities (McGuire 1997).

It should be noted here that all phase information between electrons is lost in the IEA.
There is now no time ordering between electrons, although time ordering for each individual
electron remains.

The validity of IEA to atomic reactions requires that the average field in which individual
electrons move does not change in time (frozen orbitals). Diaz et al (2000) have successfully
applied a method that uses mean field potentials which differ initially and finally, but remain
frozen during the collision. This approach is conceptually similar to the more complete forced
impulse method of Reading and Ford (1987), where correlation does not change between the
external interactions, V (t). Kirchner et al (2000) have recently introduced a formulation that
allows the effective screening among the electrons to change during the collision.
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2.2.2. Correlation in time and the ITA. The time evolution of different target electrons
becomes interdependent (correlated) if the Hamiltonian H0 cannot be split into a sum of single
electron terms. The operators VIj (t) and VIk(t

′) do not commute, and the evolution operator
is not separable. This means that the presence of spatial correlations results in correlated time
evolution of the electron amplitudes. The interaction of the projectile with one of the electrons
influences all the other electrons, and the target reacts as a whole.

One may associate with each external interaction a transition between virtual target states.
In this picture, one may ask whether the result of interaction first with a state j and then
a state k is different from interacting first with k, and then with j . If the two interactions
cannot be commuted, the system is temporally aligned. Then the time evolution for each
individual interaction time is no longer translationally invariant, and the associated energy is
not conserved. Only on the macroscopic level is energy conservation restored.

In analogy with IEA, we can introduce the ITA assuming that time evolution of a target
electron occurs independently on other electrons in some time averaged field (Godunov and
McGuire 2001). Formally, we assume that, under certain conditions, one might rewrite
equation (5) as

U(t, t0) = T exp

(
− i

∑
j

∫ t

t0

VIj (t
′) dt ′

)
≈ Tav exp

(
− i

∑
j

∫ t

t0

VIj (t
′) dt ′

)

=
N∏

j=1

Tav exp

(
− i

∫ t

t0

VIj (t
′) dt ′

)
=

N∏
j=1

Uj(t, t0) = UITA(t, t0). (11)

The operator Tav gives uncorrelated temporal propagation, yet includes a time averaged
contribution from time ordering. Thus we take Tunc ≡ Tav. Temporal correlation is defined as
the difference between an exact result and an uncorrelated limit, e.g. Tcor = T − Tunc. This
also corresponds to the statistical notion of correlation as a fluctuation about some mean value
(Balescu 1975)4. The correlated term, Tcor, regulates sequencing and gives time correlation
or time entanglement of the interactions VI (t). In dynamic systems (McGuire et al 2001)
time correlation is provided by enforcement of time ordering on the sequence of interactions,
VI (tn) . . . VI (t2)VI (t1), which causes the quantum system to change.

Thus, in the second order one has,

T VI (t)VI (t
′) ≡ θ(t − t ′)VI (t)VI (t

′) + θ(t ′ − t)VI (t
′)VI (t). (12)

Godunov and McGuire (2001) have shown in this case that,

TuncVI (t)VI (t
′) = 1

2 (VI (t)VI (t
′) + hVI (t

′)VI (t)), (13)

TcorVI (t)VI (t
′) = 1

2 sign(t − t ′)[VI (t), VI (t
′)]. (14)

For the N -electron target VI (t) = ∑N
k=1 VIk(t), and the time ordering operator T can be

rewritten as,

T = T jj
unc + T jj

cor + T jk
unc + T jk

cor. (15)

Here T
jk

cor represents a time correlation between different electrons (cross correlation) while
T

jj
cor corresponds to autocorrelation (Mandel and Wolf 1995) for a single electron, namely,

T jj
unc VI (t)VI (t

′) = 1
2

N∑
i=1

(
VIi(t)VIi(t

′) + VIi(t
′)VIi(t)

)
, (16)

T jj
cor VI (t)VI (t

′) = 1
2

N∑
i=1

sign(t − t ′)[VIi(t), VIi(t
′)], (17)

4 A simple product form is uncorrelated with this definition of correlation.



5060 A L Godunov et al

T jk
unc VI (t)VI (t

′) = 1
2

N∑
i 
=l

(
VIi(t)VIl(t

′) + VIl(t
′)VIi(t)

)
, (18)

T jk
cor VI (t)VI (t

′) = 1
2

N∑
i 
=l

sign(t − t ′)[VIi(t), VIl(t
′)]. (19)

By definition (Godunov and McGuire 2001), the ITA corresponds to neglecting time correlation
between different electrons, i.e. T

jk
cor = 0. With this definition the wave amplitudes for

individual electrons still retain effects of time ordering. Of course it is possible to remove the
sequencing effects in the single electron amplitudes as well by T

jj
cor = 0. When the uncorrelated

limit is taken for a single electron, we call it the independent sequencing approximation, since
all sequencing of the external interactions is uncorrelated in time. Even in this independent
sequencing approximation, one may deal with a spatially correlated many-electron system.

Effects of time ordering in a one-electron system have been observed (Zhao et al 1997)
using an external time varying magnetic field for V (t) and measuring phase dependent
fluctuations in resonance fluorescence spectra.

2.3. Time–energy transformations

The wave amplitude propagating in time has a conjugate representation in energy space,
corresponding to the Fourier transformation from time to energy. This gives some insight
into the nature of time correlation and time ordering.

2.3.1. Time correlation and energy non-conservation. Let us consider the product of two
coated interactions,

VI (t
′)VI (t) = eiH0t

′
V (t ′)e−iH0t

′
eiH0tV (t)e−iH0t . (20)

The operator e−iH0(t
′−t) propagates the full wave amplitude from time t to time t ′ undisturbed

by V . Without time ordering t ′ may be either after or before t . Using the eigenstates of H0,
we obtain the matrix elements of (20), namely
∑
v

∫
dEv eiEt ′ 〈E|V (t ′)|Ev〉e−iEvt

′
eiEvt 〈Ev|V (t)|E〉e−iEt

=
∑
v

∫
dEv 〈E|V (t ′)|Ev〉e−i(Ev−E)(t ′−t)〈Ev|V (t)|E〉 (no time ordering),

(21)

where a sum and integration over all quantum numbers describing the virtual intermediate
states v is assumed. Here the time propagation is associated with the factor exp(−i(Ev − E)

(t ′ − t)). When time ordering is included, the correct time ordered propagator becomes
θ(t ′ − t) exp[−i(Ev − E)(t ′ − t)].

Many atomic calculations, including those discussed in this paper, are performed in the
limit of stationary scattering. Hence, it is instructive to consider the Fourier transform of the
time ordered propagator itself (Goldberger and Watson 1964),∫

d(t ′ − t) θ(t ′ − t)e−i(Ev−E)(t ′−t) = i

Ev − E + i0
= πδ(Ev − E) + i

Pv

Ev − E
. (22)

Here Pv denotes the principal value. This transformation relates propagation of an atomic state
in time to its connection with virtual states with various energies Ev . The first term on the left,
which contains no time ordering, permits only Ev = E. The second term is non-zero only
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when Ev 
= E, i.e. when the transient intermediate energy Ev differs from the total energy
E of the system. This corresponds to quantum fluctuations of the intermediate energy about
the total energy. The principal value term Pv violates conservation of energy for short times,
constrained by the quantum uncertainty, |Ev −E|#t � h̄. It is this off-energy-shell, principal
value term that is the Fourier transform of Tcor of equation (14) that produces time correlation.
This term is called ‘off-energy-shell’ because the magnitude of the intermediate momentum �kv
differs from the magnitude of the total momentum �k and thus k2

v/2M 
= k2/2M , which defines
a shell in k-space on which energy is conserved. We note that the Tcor = T − Tunc terms are
rotated by 90◦ in the complex time plane with respect to the often dominant Tunc operator. This
90◦ phase shift is useful in keeping track of terms that produce time correlation.

In the ITA there is no time ordering. Then operator T is replaced by a constant, C, and∫
dτ e−iEvτCeiEτ = 2πCδ(Ev − E). This term is on the energy shell. Thus without the

principal value term in equation (22), there is no off-shell contribution. In this case only terms
sequence-averaged over VI (t

′)VI (t) contribute.

2.3.2. Sequencing and causality. In equation (22) the time ordering is carried by the +i0
term. This means that waves are coming into the intermediate states v of equation (20) and
are later scattered. That is, G0 = 1/(E′ − E + i0) is a plane wave Green function, with time
propagating forward from VI (t) to VI (t

′). In energy space the full wavefunction, an eigenstate
of the full Hamiltonian H , can be related to the eigenstates of H0 (Goldberger and Watson
1964, Ivanov 1989), namely,

|E〉 = GV |E(0)〉 =
∞∑
n=0

(G0V )n|E(0)〉 =
∞∑
n=0

(
1

Ev − E + i0
V

)n

|E(0)〉. (23)

Hence the time ordering in equation (5) corresponds to a product of plane wave Green functions,
G0 = 1/(Ev − E + i0), which enforce causal-like time propagation, step by step from one V

to the next. In this sense one may consider time ordering to be a generalization of causality
from two points in time to many points in time.

3. Results

In this section we present calculations testing the influence of correlation in space and
correlation in time between electrons. We consider two-electron transitions in helium
interacting with incident protons and electrons. Our calculations are second order in the
external interaction, V (t).

In principle time correlation between electrons may be evaluated in either t-space
by including Tcor in equation (15) or in E-space by the corresponding off-shell terms in
equation (22). In either case calculations including time correlation between electrons are
difficult and time consuming, even in second order. In the collision energy regime in which
our calculations were done, it is clear that it is important to include at least one interaction of the
projectile with each electron. Thus all VI1VI2 terms are included exactly, but third-order terms
such as V 2

I1VI2 and VI1V
2
I2 are omitted. Hence time correlation between the two electrons

is included. Our calculations were done in the E-space formulation, so the effects of time
correlation between electrons is tested by running our computer codes with and without the
off-shell term in equation (22). When the off-shell terms responsible for time correlation are
omitted, we obtain the relatively simple ITA.

When spatial correlation is removed, the second-order calculation reduces to a product
of two relatively simple uncoupled first-order terms, consistent with equation (10). This
corresponds to the IEA, where there is no spatial correlation between electrons. We also
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1
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100  Born 1
 Born 2
 Born 2 ita
 Born 2 iea
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σ 
(1

0-2
0

 cm
2 )

collision velocity (a.u.)

Figure 1. Cross section for the ionization–excitation of helium to He+(2p) 1P state by proton impact.
Present theoretical results: ——, full second-order calculations; — · —, calculations in the ITA;
– – –, IEA; · · · · · ·, first Born approximation. Experimental results Merabet et al (2001b): •.

consider calculations first order in V (t), where one electron is excited by V (t) and the second
by correlation. These two approximations are discussed in detail elsewhere (McGuire 1997).

The second-order amplitude for ionization–excitation of helium was calculated by a direct
summation over the discrete intermediate states of the type (1snl)1L and integration over
electron continuum states (nsεl)1L (n = 1, 2). Discrete states with n � 3 and l � 2
provide the main contribution to the amplitude. The inclusion of single-electron excitation
configurations with n up to 5 and l up to 4 as well as low-lying autoionizing states does not
change the results of calculations significantly (i.e. less then 5%). However, inclusion of the
single electron continuum (nsεl)1L (n = 1, 2) in the intermediate states was important, and
improved the agreement with experimental data. The continuum partial waves with l up to 7
were included in the calculations. Spatial correlation in the bound states is included within
the multi-configuration Hartree–Fock (MCHF) method (Froese Fisher 1996). The continuum
wavefunctions of an electron in the field of the recoil He+ ion were calculated in the frozen-core
Hartree–Fock approximation (Cowan 1981). The symmetrical orthogonalization procedure
has been applied to ensure the orthogonality of the wavefunctions used. The details of our
calculation for two-electron excitation of autoionizing states of helium has been previously
described (Godunov et al 1997).

Our first examples, shown in figures 1–3, are for ionization of one electron with excitation
of the second electron in helium. In figure 1 we present total cross sections for ionization–
excitation by proton impact as a function of the velocity of the projectile. It is clear in this
figure that the first Born calculation is not accurate at the lower projectile velocities shown,
but does converge to the full second Born calculation (which includes first Born contributions)
at the higher velocities as expected. At high velocities the IEA fails. The failure is due to the
absence of first Born contributions, which arise due to spatial correlation between electrons.
In figure 1 the effect of time correlation results in increasing the total cross section. In the
regime shown here, the ratio of ITA to full second Born cross sections falls from about 1.2 to
1.1 between v = 2 and 9 au.
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Figure 2. Cross section for the ionization–excitation of helium to He+(2p)1P state by electron
impact. Present theoretical results: ——, full second-order calculations; — · —, calculations in
the ITA; – – –, IEA; · · · · · ·, first Born approximation. Present experimental results: •.
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Figure 3. Ratio of cross sections of ionization–excitation into m* = 0 or ±1 by proton impact.
Present theoretical results: ——, full second-order calculations; — · —, calculations in the ITA;
– – –, IEA; · · · · · ·, first Born approximation. Experimental results Merabet et al (2001b): •.

Figure 2 is the same as figure 1 except that the incident projectile is an electron instead
of a proton. It can be seen that ionization–excitation by electron impact is similar to the case
for proton impact, except that the effect of time correlation reduces the total cross section.
We note that the experimental cross sections have been normalized to our full second Born
calculation at high velocity (Merabet et al 2001b).

In excitation–ionization the electron excited into the excited level He+(2p)1P may be
excited into magnetic sublevels m* = 0 or ±1. The ratio of the cross sections into m* = 0
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Figure 4. Effect of time-correlation on the autoionizing 2s2(1S), 2p2(1D) and 2s2p(1P) resonances
of helium in electron emission spectrum excited by 100 keV proton impact. The electron angle
of emission is 110◦ and averaged over all projectile scattering angles. Present theoretical results:
——, full calculations; — · —, calculations in the ITA; – – –, IEA; experimental data are from the
group of Bordenave-Montesquieu (Godunov et al 1997).

or ±1 has been observed (Merabet et al 2001b). The experiment was done at the University
of Nevada-Reno using a 2 MV Van de Graaf machine to accelerate H+ ions. An optically
characterized Mo/Si multi-layer mirror (MLM) polarimeter (Merabet et al 1999) was used to
measure the degree of linear polarization of the He+(2p) Lyman-alpha decay in the extreme
ultraviolet region following proton impact on neutral helium gas (Bailey et al 1999, Merabet
et al 2001a, b). The degree of linear polarization of the emitted light is related to ionization
plus excitation magnetic substate cross sections for population from the helium ground state
to the He+(2p) m* = 0 and 1 magnetic sublevels, namely (Persival and Seaton 1958),

P(2P0) = 3(σ (0) − σ(1))

7σ(0) + 11σ(1)
. (24)

The differential cross section is given by σ = σ(0) + 2σ(1), where σ(−1) = σ(+1) for our
cylindrical collision symmetry.

We have calculated the ratio of cross sections into m* = 0 or ±1. In figure 3 we present
the ratio of these cross sections as a function of the velocity of the incident proton. The first
Born calculation does not agree well with observation, even at the higher velocities shown.
Calculations done in the IEA, which do not agree well with our full second Born calculations
for absolute cross sections (e.g. figure 1), are surprisingly close to the data for the ratio in
figure 3, except at the higher velocities where we expect the IEA to break down. The ITA
lies above the data. Our full second Born calculation, including both spatial and temporal
correlation is in good agreement with the observed ratio, except at the lowest velocities, where
higher Born terms are expected to be significant.

The next case we consider is double electron excitation of autoionizing states in helium
by proton impact. Such autoionizing resonances have been studied experimentally using high-
resolution spectroscopy (Bordenave-Montesquieu et al 1995, Godunov et al 1997). In figure 4
we present calculations of the electron emission spectrum in the region of three resonances
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in helium, namely 2s2(1S), 2p2(1D) and 2s2p(1P) excited by impact of 100 keV protons.
The difference between the time correlated and time uncorrelated results is so small that it is
difficult to see for all three resonances shown in figure 3. Both the shapes and the intensities
of all three resonances are well represented by the ITA. In these cases time correlation is not
important. This is typical of most of the cases we have calculated, including double excitation
by electrons as well as protons, excitation–ionization by protons and electrons, and a Thomas
resonance in electron capture by a proton (McGuire et al 2001). Calculations in the IEA are
very different from the experimental data both on the resonance shape and intensity.

As is well known (Fano 1961), the effect of interference between the direct and resonant
ionization (via a double excitation) for excitation of the helium autoionizing resonances can
be significant. In special cases the effect of time correlation can be amplified, e.g. when the
relative phase between competing pathways is close to (2n + 1)π . An example with double
excitation by electron impact was considered in an earlier paper (McGuire et al 2001). Such
cases do not often occur, however. In most cases we have studied in high velocity interactions
the effect of time correlation between electrons is small and the ITA is accurate.

4. Discussion

In this paper we compare the effects of correlation in space and correlation in time between
electrons. In some respects these two types of correlation are similar. Generally correlated
quantities are interconnected. In both cases correlation may be defined as a deviation from an
uncorrelated limit, which may be written as a product of single electron terms (McGuire 1997,
Godunov and McGuire 2001). There are also differences. In the time evolution operator
U(t, t0), correlation in space between electrons occurs when [VIj (t), VIk(t)] 
= 0, while
correlation in time between electrons occurs when [VIj (t), VIk(t

′)] 
= 0. Spatial correlation
is caused by the internal 1/rij Coulomb interactions between electrons. We call the spatially
uncorrelated limit the IEA. Others use similar phrases, such as the independent particle model
(Ford and Reading 1996). In such models the particles are decoupled in both space and time,
as discussed in section 2.2. In general time connections are caused by sequencing of external
interactions. This requires both time dependent external interactions and time ordering. This
general idea seems to hold classically, as well as quantum mechanically, although the specific
effects we consider in this paper are quantum mechanical. Time correlation between electrons
requires both a stepwise causal driving interaction and electron correlation. We call the limit
in which time correlation between electrons disappears the ITA. In this limit time connections
between external interactions may still be present in the single electron wave amplitudes. We
call the limit in which time sequencing is removed in individual electron wave amplitudes the
independent sequencing approximation. The manifestation of spatial and temporal correlation
is generally different, as illustrated in our results in the previous section.

We have considered alternative approaches to the formulation of time correlation. One
alternative was to formulate the problem in terms of sequencing of the actual transitions
of electrons, e.g. ionization and then excitation. We found no convenient way to do this
mathematically. In addition ‘transition’ implies transition to a well defined state. In multi-
electron systems such states are not easy to define. In contrast, external interactions, V (t),
such as Coulomb interactions of electrons with charged projectiles or interactions of electrons
with photons, are well defined. In any case the only possible source of time correlation is
T VI (tn) . . . VI (t2)VI (t1) since all time dependence is contained in this term, as noted below
equation (5). In addition Briggs and Rost (2000) note that the time in V (t) is classical and
that ‘the TDSE (time dependent Schrödinger equation) is in fact a mixed quantum–classical
equation’.
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We wish to point out that there are two ways in which different electrons may be coupled
in time. The first is direct (or spatially correlated), where the time coupling from V (t) is
shared among electrons via internal spatial interactions between the electrons. In this case
the time propagation of the electrons is coupled. This is what we have called time correlation
between electrons. The second case is indirect coupling via a strong external V (t). If there
is no electron–electron correlation, then the electrons may still couple independently with the
external V (t). For example, one or more electrons may become entangled with a strong laser
field. In this case the electrons are independently coupled to the external field. This indirect
independent coupling of different electrons with an external field is not what we mean by time
correlation between electrons. An example may be instructive. In most cases the electrons
in the initial state of a multi-electron system are correlated and may be treated coherently.
However, the wave amplitudes for these electrons could be randomly excited by random
external interactions. In the IEA with a strong interaction, V (t), the wave amplitudes for each
electron could evolve randomly, i.e. incoherently. Then, there would be no time correlation
between these electrons. From our perspective they are not directly connected. In the presence
of internal spatial correlation, time evolution of these electrons would become coordinated, i.e.
internally coupled. Then different electrons would become correlated in time. Photons work
much the same as electrons, except that there is no correlation interaction between photons in
the non-relativistic limit.

Correlation between electrons may be useful in characterizing quantum transmission of
information and sequencing in complex electronic systems. In applications from molecular
dynamics (Levine and Bernstein 1974) to quantum computing (Bennet 1999), connections
between electrons increase the number of possible reaction pathways. Electronic mixing can
redistribute energy and facilitate transitions that would otherwise be forbidden. Both the
external and internal interactions can be used to shape and dynamically control nanostructures
(Macucci et al 2001). In these applications it would be of interest to be able to estimate where
effects of space and time are significant. Spatial correlation will be strong when the action of
the correlation interaction,

∫
v dt , is not small compared with h̄. It is not yet clear to us where

correlation in time is large in general.
In the introduction we noted the similarity of space and time. Space and time also differ.

Space has no preferred direction. However, both causality and entropy give time a preferred
direction. For example, in the expression for Tcor in equation (14), sign(t−t ′) = (t−t ′)/|t−t ′|
may be regarded as a unit vector in the direction of increasing time. Entropy, on the other
hand, is usually defined in terms of a temperature, which requires statistical equilibrium. In
nuclear physics (Goodman and Jin 1996) the entropy of a many-body system (say 30 or so
nucleons) may be identified after a collision when the system has reached thermal equilibrium.
This equilibrium is characterized by a Maxwellian distribution of velocities of the nucleons.
Particles that come out of the interaction quickly do not have such a distribution and are not in
thermal equilibrium. Slower particles, which have interacted with one another, are thermalized.
This can be tested experimentally. One may also calculate how long it takes for the system to
reach equilibrium. For many electron systems, we propose that the equilibrium time may be the
correlation time required for a correlated system to adjust. Such calculations may be compared
to experiments that observe whether or not the electrons have reached thermal equilibrium.
This line of analysis also suggests that time ordering (i.e. causality) may be more fundamental
in defining the arrow of time than entropy.

Calculating how long it takes for correlation to take effect has been an unsolved problem
for a number of years (Ford and Reading 1996). We point out that this correlation time may
now be calculated, as in quantum optics (Mandel and Wolf 1995), by integrating over the
normalized cross correlation function. Calculation or estimation of correlation times may be
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generally useful in understanding how long transient effects last in quantum transmission of
information. This could be useful, for example, in estimating the speed of quantum computing,
or in determining the recovery time of nanostructures in which electrons have been excited by
an external interaction, V (t).

We noted before in section 2.2.2 that the various VI (t) are connected pairwise by Tcor.
This is similar to spatial correlation where electrons couple pairwise via their mutual two body
interactions. This pairwise coupling is the basis for the BBGKY hierarchy (Balescu 1975),
where higher-order correlation functions can be generated from lower-order correlation
functions in a systematic way. It may be possible to develop a BBGKY-like hierarchy for
correlation in time.

We have used the intermediate representation to formulate time correlation between
electrons since this representation is well suited to problems where the time dependence ofV (t)

is explicit. This representation also has the advantage that knowledge of the eigenstates of H0

can be used. In energy space it is convenient to use the Schrödinger representation, especially
when the scattering is stationary (or approximately stationary). In quantum optics calculations
are often done (Huang and Eberly 1993) in the intermediate representation. In collisions with
charged particles the algebra is usually simpler in the Schrödinger representation. Also it is
relatively easy to keep track of off-energy-shell terms in the Schrödinger representation. In
principle, calculations could also be done in the Heisenberg representation. This tends to
be awkward, however, since it is usually necessary to evaluate exponentials of commutators
(McGuire 1987). In any case, observable effects corresponding to time correlation should be
independent of the representation used.

In many cases the effect of time correlation between electrons is small (Godunov and
McGuire 2001). This is fortunate in that the off-shell, time-entangled terms require more
than one hundred times more computer time to evaluate than the simpler on-shell terms,
even in our relatively simple second-order calculations. Many-body calculations are difficult
because the number of parameters required is exponential in the number of bodies in the system
(Kohn 1999). It has been estimated that at present rates it takes about seven years for computer
capacity to expand enough to add one more particle to a computer calculation (Godunov and
McGuire 2001). In calculations of dynamically correlated systems of particles, an independent
time (or on-shell or wide band) approximation is widely used (Fang and Bartschat 2001,
Madison 2000, Lucey et al 1999, Marchalant et al 1998, Nagy et al 1995, Straton 1995) to
save computational time and effort. It has also been noted that off-shell effects disappear in
the closure approximation if the average energy of propagation used for closure is taken to
be one-half of the transition energy (Straton 1995). When this relatively easy ITA is valid,
calculations of relatively complex systems are feasible. On the other hand, there are cases
when temporal and spatial correlation is significant. Understanding these cases may be useful
in developing new methods for quantum transmission of information.

5. Summary

In summary we have considered the effects of both spatial and temporal correlation between
electrons in two-electron transitions in atomic targets caused by the impact of charged particles
and photons. Our formulation is complete through second order in the external interactionV (t)

and all orders in the internal correlation interaction between the electrons. Spatial correlation
arises from the internal interactions between the electrons. In the IEA, where correlation in
space is removed, the electrons evolve independent in both space and time. Time correlation
between electrons requires both time ordering of the external interactions, corresponding to
causal propagation in time, and internal electron correlation. We have evaluated the effects
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of spatial and temporal correlation between electrons in excitation–ionization and in double
excitation resulting from collisions of helium with moderately fast protons and electrons. In
the velocity range of 3–10 au our full second Born calculations are in good agreement with
observation. In excitation–ionization with excitation into m* = 0 or ±1 magnetic sublevels in
the (2p) state, the effect of both spatial and temporal correlation is larger than the errors in the
observations presented here. Thus we have been able to present evidence for the presence of
both correlation in space and correlation in time between electrons in some atomic reactions.
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