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In this and  succeeding paper it is shown how a theory equivalent to the Bohm & Pines
collective motion theory of the electron plaama can be dorived direotly from s perturbation
serios which gives in principle an exaot solution of the many-body problem. This result is
sttained by making o of. disgrammatic method of analysis of the perturbation series. By
& procoss i ofplwmn I gy parts fmm the

i
tion lmwm tho pn-tlelm A usofal integral equation for this modified interaction can be
sot up, and it is shown how the enefgy of the systom can be expreased in terms of the modified
interaction. Tho closo connexion between this approach and the dielectrio theary of plasma
oscillations is indicated.
1. INTRODUCTION
Within recent years much attention has been given in the study of the quantum
hanical many-body problem to the collective modes of motion which may be
present (Bohm & Pines 1953; Tomonaga 1955; Bohr & Mottelson 1953). Two main

theories of collective motion have been developed, that of Tomonaga (1955), and
the superfluous co-ordinate type of theory introduced by Bohm & Pines (1953). In

the T theory & fc of variables is made in such a way that some
of the new oo-ordma.tea n.re directly related to the collective modes of motion, whilst
the i new re iated with internal modes of motion. Inthe

. fluous di certain auxiliary variables are introduced
together with an equal number of subsidiary conditions to preserve the correct
number of degrees of freedom, and a transformation is made in such a way that the
new auxiliary variables are related to the collective motion, whilst the original
co-ordinates when transformed are related to the internal motion. If the collective
modes being studied have real physical significance, then it will be found in both
these methods that the Hamiltonian is, to a good approximation, separable
in the new dis and a separation of the collective motion is thereby
obtained.

Though these methods are quite sucocessful, they have certain unsatisfactory
features. In the Tomonaga mothod it is generally found that when the Hamiltonian
has been separated the problem of ﬁndmg the e:genvalues of the internal motion

part is very diffioult. In the sup one does not meet
wnth thxs d:ﬁcnlty but with an eqmva.lenc one; this is that it is diffioult to find
the subsidi diti In addition, both theories

suffer from the difficulty of ‘not being a.ble to treat very easily theinteraction between

the collective and internal modes of motion, or the intimately related problem of

the damping of the collective motion; where the damping is small this is not a very
[639)
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souous problem, but in certain cases, e.g. the upphoatlon of the Bohm & Fij,
theory to metals, it may be quite senous We shall see later that this problem of

g the d ing is also inti d with the problem of the cut-offi
the Bohm & Pines theory of the eleotron plasma (1953).
In the case of the electron plasma an al ive type of theory of a different

‘eh&rwperfromthosedewnhed above has been developed. In this ‘dielectrio’ theory
(Mott 1954; Frohhch & Pelzer 1955; Hubbard 19558, b) one argues along semi.

classical lines, reg: g the electron gasas a di From this point of
v:e\v one thmh of the elect.rom a8 mmwtmg w:bh one another like partlcleo in the
d by the their is

herefore modified and. d. The plasma oscillations are thought of as being the
lari: waves in the diclectri dium. This approach has advantages over the
other two nppro:whea in that it can easily treat the damping problem, and does not
of the collective and internal modes of motion, the

one gomg smoothly over into the other; it suffers from the disadvantages of being
& phenomenological theory and difficult to quantize satisfactorily.

It is the purpose of this and a succeeding paper (Hubbard 1957) to develop yet
another app h to the collective motion problem which is applicable to the
electron plasma, and tosimilar systems, and wluch 'we hope combines the advantages
of the treatment: ibed abs d yet is free of their disadvantages. This theory
is based upon an (infinite) perturbation series wluoh provides in principle an exact
solution to the many-body problem and th all the physical eﬂccu
indluding the collective motion. The various ibuti to this p b
series can be conveniently analyzed making use of diagrams similar to Foynman
diagrams (Goldstone 1957). It is now argued that we may be able to simplify our
perturbation series by & process exactly analogous to the elmnnanon of photon

1f- gy parts in the lysis of the S-matrix in g (seo,
forexample, Dyson 1949). This is in fact so, and the analysis shows that d only
retain in our perturbation series terms corresponding to diagrams free from th«q
pam pmvxded everywhere in the perturbation senea we replace the ordinary

the particles by & modified i

To establish the ion b this apy ly formal device for simplifying
the perturbation series and the collective motion problem let us now consider the
physical interpretation of what we shall do J ust as in the electrodynnmm case, we
canregard the di din th J f the p
the actual physical process which gives rise to the corresponding oontnblmon tothe
perturbation series. Interpreting the parts of diagrams analogous to photon self-
energy pam in thu way, we can see that they correspond to the modification of lhe
ordinary particles by the polarization of the medium
by the remaining particles; we shall refer to these as polarization parts. Thus, the
elimination of these parts and the replacement of the ordinary interaction by the
modified i ion in the p X series i ivalent to going over to
the viewpoint of the dlelectna theory desoribed above, 80 thae ‘we may expect our
theory to be equivalent to the other theories of collective motion. This expectatios
is in faot borne out by detailed caloulation,
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Tho presont papor dovolops the theory in a general form, and the dotailod tront-
ment of the cloctron plasma is reserved for a auoooedmg papor. Since the diagram-
matic analysis is used in a diffe (altl lent) form to that given by
Gold (1957), it is developed afresh in §§2w4. In§6mdmumd certain
sinplifications which arise when one considers the case of a uniform gas; in the
remainder of the paper it is assumed that we are deahng wntln this case.

Section 6 proceeds with the main prog the pol limis
and the modified interaction mcroduced In§7an mtegral eqtmnon is derived for
the modified interaction which very great.ly simplifies its caloulation. Finally, in
§ 8it is shown how the energy of the system can be expressed exactly in terms of the
modified interaction. This result will enable us to calculate correlation energies
directly from the modified interaction which in turn can be calculated easily using
the intogral equation,

q

2. THE DIAGRAMMATIC ANALYSIS OF THE PERTURBATION SERIES

We shall ider the problem of d ining the energy spectrum and wave

(unotlom ofa g.u of . I‘ermx-Dxrao particles interacting with one another through an

tential and movmg 8o slowly that relativistio effeots can

be neglected; we melude also the case in which the particles move in an external
potential field. The Hamilton for such a system is

H = Hy+H', (1)

where Hyincludes the kineti gy of the particles and their p ial energy in the

external field, and H' is the interaction energy of the particles. H’ will be treated as

a perturbation.

One way in which we may develop the perturbation series for H' is by making use
of the adiabati We ider the i ion H' to be slowly
switched on between £ = —oo and ¢ = 0, and to be slowly switched off between
t=0and¢= +00; then a system which at # = — oo is in an eigenstate ¥y of H, will
between ¢ = —o0 and ¢ = 0 slowly change into an eigenstate of H. This result has
been proved by Gell-Mann & Low (1951) in the following form: if ¥y is an eigenatate
of H, belonging to the energy f,, then

Yo hm S0 —a0) X/ ‘1',,/0[ | (o. -o:\) YD) @)
=
is an eigenstate of H belonging to tho energy
E = Ey+AE = Eg+ lnns(‘l", | 'S, (0 —¢0)

NN ISV

o) [ L(Fa ] S,(0, =c0) 1%. ®

where S,(¢,¢) is the solution of the equation A
#3500 = BOSE, @

isfying the boundary condition S,(¢', ') = 1, and
H,(t) = cWRH, F o~WNE, galil, 5)
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The parameter « is seen to govern the rate of switching on and off of tho i interaction;
the limit @ - + 0 means thab the potential is awntohed oninfinitely slowly, theoond.
tion for the tness of the adiab

‘We can now obtain a perturbation series for ¥ by solving (4) by iteration, To do
this we replace (4) by the integral equation

so=1+5[ mEOSEO, ©

incorporating the boundary condition at ¢ = —oo (in future we shall for brevity
write S,(¢, —c0) a8 5,(¢)). Iteration of (6) gives

=1+ 3 (l)f_ af* a.. [T B BG) . Bl

= ()T e j’ d... [ PEGEG.HEL )

where P is the ch: logical ordering op ; this is the perturbation series we
shall use.
Qur interaction Hamilton can be written in the notation of field theory

B = [y wx') ot ) F ) i) dxa = 00(0) ®
where v(x —x') is the mutual potential energy of two particles at x and x’, ¥ is the

number of particles in the system, and ¥(x), ¥/(x) are the particle field operators.
These can be written

P(xX) = Su(x) 7,
o ®
¥(x) = 2T
where the u(x) are the eigenfunctions of the -partiole Hamil
2
[Z+ V6] wix) = Bou) a0
in which p is the momentnm and U(x) the external potential. The operators 7;and
9); are tion and d for the particle in the state 4; since our
partioles obey Ferm:-Dlra.c atamtios they mtufy the anticommutation relations
T Bt = ol = 0 [T = O ]

In (8) spinor indices are suppressed since their inclusion only requires a trivial
generalization of the theory. The secorid term in (8) subtracts the self-energi
of the particles due to the interaction v, since these are included together with
the mutual interactions of the particles in the first term of (8). (If the potential
is singular at the origin v(0) is not defined. We can, however, easily introduce

& suitable limiting procedure. If we Fourier transform v, v(x) = J. (k) o> dk, thes

we oan work w:th Vg(X) = f v(k) e'-2dk, for which vx(0) is defined, and tabs
tRo limit & -co at the end of the caloulation.)
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To obtain our perturbation series in a suitable form tor 33 ion we now have
to substitute (3) into (3) and (5) into (7). Before doing this it is convenient to include
the (constant) second term of (8) in H, and to symuwetrize the first term; A’ then
becomes

B = g o= (P V) TR ) + T V) B ) . (1)
Putting (12) into (6) we can easily obtain
(O = 3 [ax[as' e -2) WO T+ Fap@ T, 09)

where 2 stands for (x, ) and 2’ for (x',¢'),

(2= 2") = v(x—X') 8t =) 621, (14)
and Yia) = P(x,t) = Tue) e = Zudx) e~(UMEiy,,
Y(z) = gac(”) e (16)

Substituting (13) into (7) we obtain

8ult) = l+.2::‘%(ﬁlh)-f‘dx,f‘dx',...rdx,f’dz;...f'dz{,
N X 9y ) =) . 0 = )
x P[Y (1) Y(2) Flmy) () + F(20) Y(2) Fm) Yr(h), oo
<o T@) Y@ F(20) Y (@) + T (20) ¥(20) W(IS) Y(an)l, (16)

where f.dz means the integral over all that part of space-time behind the surface ¢.

We can conveniently analyze the P product in (16) by making use of Wick's
uworem (Wick 1950). This analysis can be simplified if we notice that we are
d only in the operation of §, on the particular eig ¥, of H,. We shall,
benceforth, assume that ¥ is a nun-degenersbe eigenstate of H, in which certain -
definite states ¢+ are ocoupied. Then we can conveniently take the state ¥, a8 a
‘redefined vaouum state’ (Salam 1953) and resolve ¥ and y according to

Y=yteyn, F=Pr4i [t4)]

unooo,
where Y@ ="3 ule)n; (destooys particles),

¥H@) = T, (crontes holes),
(@) = S W), (destroya holes),

) = "% W), (oventes particies) )
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civ the tevms occupied and unnwu[m,d rofor to the stato of occupation of g,
stato ¢ in W), We thon have tho result
Y(@) ¥y = ¥(2) Vo = 0. (19)

To take advantage of the result (19) we resolve the P produot in (16) in such away
a8 to move all the operators yr+, Y+ to the left and all the operators =, ¥~ to the
right. Thig analysis can be porformed quite straightforwardly using Wick’s theorem,
When this analysis has been completed we can reject al terms involving y~ and
¥~ by virtue of (19). Only one special point arises in this analysis. This is that,
whereas in the case dealt with by Wick all operators with the same time argument
efther commuted or were already arranged as an § product, this is not o in the
present case and one has to allow for e with the same
time argument.

When the analysis has been completed, it is found that the various terms con.
tributing to S,(¢) ¥ \}}he termsnot. involvmg [/ or% ) can be conveniently classified

in terms of certain mmxlu to F g there being a contribu.
tion to S,(2) ¥ g to each di ‘We proceed at oneo to the prrucnp.
tion for drawing these di: and for caloulating the P g

0 8,(t).

The diagrams will be of orders 1,2, ..., corresponding to the contributions arising
from different order terms of (16). The prescription for drawing an nth order
diagram is as follows:

(i) Mark » points on the diagram and label these z,,%,, ..., ,; mark a further
n points and label with ], ..., 2;,; join the pairs of points z,, z; by ‘interaction’ lincs
(broken lines in the diagrams of this paper).

(ii) Draw directed ‘particle’ lines, one entering and one leaving each point; theso
lines may run between points or from a point to itself or from & point to the edge of
the diagram or from the edge of the diagram to a point.

The diffe nth order di are obtained by drawing in the perticle lines in
all possible ways. It will be noted that the particle lines form closed polygons and
open polygonal arcs, 8o that to every particle line running inwards from the edge of
the diagram there is one running out connected to it by a chain of particle lines.

The ibutions to S, (¢) ponding to a given diag is a certain integral
which can bo written down from the following prescription: ’

(i) For every interaction line z;z; introduce a factor v(z; — ;) into the integrand.

(ii) For every particle line running from a point y( = somo z; or ;) to the edge uf
the diagram introduce a factor ¥+(y) into the integrand, and for overy partiole line
running from the edge of the diagram to a point y introduco & faotor Yr+(y) into the
mtcgrn.nd The Y+ and ¥+ are to be arranged so that if Y+(y) corresponds to the
incoming line of one of the open polygonal arcs and ¥+(z) to the corresponding
outgoing line, then ¥+(z) is adjacent to and on theleft of Y+(y).

(iii) For every particle line running from a point y to & point z (%) introduce
a factor 8(z,y) into the integrand.

(iv) For every particle line running from a point y to itself introduce a factor ply'
into the integrand.
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(v) Integrate with respect to dx,dsy...dz,dx]...dx} over the region of space-
time behind the surface ¢.

(vi) Multiply the integral by (2i%)~"(n!)~1( = 1)®, where p is the number of closed
particle loops in the diagram.

The quantity p(x) is just the charge density corresponding to '¥,, namely

o) = T a0 w,(x), (20)
Ne—"
whilst the quantity S(a’, ) is a propagator given by
SEe)m el =) 3 W) o) =ele—€) F ue) o) @1)
where ety=1 if t>0
= 0 otherwise.
The function S(z, ) is the solution of the eq
[ma-‘a,—v' U(x)]S(a:,x')-6(x—x')d(t—¢'), (22)

which reduces to 3 — p(x, X') when ¢ = ¢/, where p(x, X') is the ordinary density matrix
corresponding to the state Wo:

Plx,x) = Fux) 7). (29)

As an example of the above prescriptions we give the contribution to §,()
corresponding to the diagram shown in figure 1(a); it is

- (ﬁ)‘ [y i A5 (03 =20 0l = ) =2 )
KT ) U+ THE) ¥+ (20) Sl 20) Sk 25) S(o, ) S 20) St ) pleR). (24)

3. THE LINKED-CLUSTER EXPANSION

The linked-cluster expansion was first suggested by Brueckner (1955) and has
been proved by Goldstone (1957) using the di ic method of analysis of the
perturbation series. The necessity for this result arises because the ordinary per-
turbation series for the energy, including that derived above, contain terms which
diverge more strongly than N, the number of particles in the system, as N ->co.
Such terms can have no physical significance and must cancel out against each
other: we should, therefore, be able to eliminate them from the series, which is done

in the linked-clusts pansion. This elimination will be carried out easily and
naturally in this section using the diagrammatio analysis.
Before proceeding to develop the linked-clust jon it is first

classify the diagrams in a certain way. We shall say that two diagrams belong to the
same olass if they have the same basic structure, i.e. if they have the same arrange-
ment of vertices, interaction and particle lines and differ only in the labelling of their
vertices; for example, the diagrams shown in.figures 1(a) and (b) belong to the same
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wlass sinee they Lo the seae basio straotiwe shown in figwe 1 (6). It is scen tuy,
each class is associated with a certain basio structure.

It can be seen from the prescription of § 2 that if two diagrams @, 6’ belong to the

same class their ibutions to S,(?) are integrals whioh differ only by a permuta.
tion of the variables of i ion, and are therefore equal. Thus all the diagramsof
the same class give an equal ibution, and the ibution of the whole classis

the ibution of a typioal b Itiplied by the number of diagrams in the
class.

-

-0

~——
~

(©)

Ficure 1

Let us consider how many diagrams there are in a given class. Let @ be a typical
member of g class I" of order n, i.e. a class whose associated structure has n interac-
tion lines. We can obtain all the other members of the class by performmg certain
permutations of the labels z;, z" of the vertices of @. The permutations of the labels

which lead to di with the prescriptions of § 2 are those which leave
the pairs z;, #; connected by interaction lines in G still connected by interaction lines
after the p ion. The only p ions which do this can be built up from

the following types of p

(i) simultaneous permutations of the 2; and «; in the same way;

(ii) the interchange of any pair z,, z}.
The number of distinct permutations whioh can be built up from these is 2*n!. Ifthe
application of every one of these permutations to the labels of G led to 3 diagram
distinet from @, then this would be the number of diagrams in the class. However, it
may be that the application of some of these permutations to @ leads to diagrams
whioh are not topologiocally distinot from @; for example, the diagrams shown in
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figures 2(a) and (b) which are obtainable from one another by a permutation of
Iabels are topologically equivalent and must not be counted oepmtely auppose the
pumber of permutations which take @ into di
itself is g(I") (this number is a function of the structure I' nther tlun of the pu-
ticular diagram); then we can easily show that the number of diagrams in the class
isin fact 2*nl/g(I").

1 G -Oo

F1ours 2

If we denote the contribution of a diagram @ to S,(¢) by S,(t, @) and the contribu-
tion of the class I" to which @ belongs by S,(! T'), then we have

5.0,T) = 275,0,0). @5)

We can now develop the linked-clust: ion. A I'may or may not
fall into two or more unconnected paru in the former case we shall say that it isan
unlinked, in the latter case linked. For le, the h in figure 1(c) is

linked whilst that shown in figure 2(c) is unlinked. It should be noticed that this
definition of linked and unlinked diagrams is not quite the same as that used by
Goldstone (1957).

An unlinked T can be lved into & set of linked structures; if the
unlinked structure I" is made up of p, linked structures Iy, p, linked atructures
T, eto., we shall write

P=p N+pg Nyt
Let @ be a typical di with th T. Using thep iption of § 2 we can
easily prove that
1
8,6, 6) = 7 [m1 (8, GO [ma Salt, Gl ..,

where G, G ... are typical diagrams with the structures I, I ..., » is the order of
T, and n,, nq ... are the orders of Iy, Iy, eto. Using (25) we obtain

86T = s [0 5.6 T ) 86, TP o @26
Finally it can be seen that
00) = pulpal . T TP o @0
10 that 8ulty T) = e (8.0, 1P [Sults TPt eore (28)
2l




et J. Hubkard

Les I, Iy, .. be the sevoff ail linmed atructures: Win (20) we allow gy, gy v tory
overall the values 0, I, 2,...., then we obtain all possible structures. Since ,(f)is the
sum of the ibutions from all possibl we have

0= % % . o S TOP S TP
= exp{S,(t, [}exp {Sult, o)}
= exp{SL.()}, (20)
linked
where 8pa(t) = :‘,‘ 8¢, T), (30)

and we have made use of the fact that the vanous 8,(t, &) commute with each other;
this is because all the ¥+ and ¥+ op (see equation (18)), and
each 8,(t, @) contains an even numberoi these. Thus wesee that S,(¢) can beexpressed
in terms of S;,,, the sum of the contributions from linked diagrams.

Let us nowresolve S.,(f) into two parts

Sa(t) = SEt) +82a(t), (31)

89.(t) containing the contributions from all linked ‘vacuum’ diagrams, that is,
diagrams with no particle lines running to or from the edge of the diagram, and
S7a(t) the contributions from all linked di with 1 lines; SP(¢) i
no operators and is a ¢ number.

Substituting (31) into (29) and (29) into*(2) and dividing out by the ¢ number
exp {SP4(0)}, we obtain

Y= .l-x;n:oexp {S2a(0)} ¥o/(¥o | exp {S7a10)} | ¥o). (32

It will be shown in the next section that S7.(t) is continuous as &> +0 whilst
89)(t) diverges like 1/a; thus, dropping a normalization factor,

¥ = exp {S7(0)} ks 39
‘where 87(0) = linlos}‘(o).

We shall see in the next section that the energy shift AE can be derived from
SQ(2), i.e. from a series involving only the linked terms; this series does not contain
terms diverging more strongly than N and so is free from the difficulty mentioned at
the beginning of this section.

4. THE EVALUATION OF INTEGRALS

In this section wo perform as an illustration the evaluation of the integral repre-

senting the of a simple diagram to §,(0). The result obtained is typical

of the general case, and we can deduoe from it certain properties of the S,(0,6).

furthermore, these results afford a link between the present formalism and that of
Goldstone.




Collective motions in lerms of many-body periwrbation theory 349

The disgram whose evslustion we shall perform is that shown in figure 3(a). The
corresponding contribution to §,(0) is according to the prescription of §2

200 0 :
3w [ o[ s A Aol X oy =X
x S(xar bai Xy, $1)8(X3, bai X, £0) P+, 8) YH(Xy, 1) TH(XG, 80) YKL, 1), (34)
where we have alrendy perfomed the integrations over # and ¢;. Because of the

pature of the fi quation (21)), it is ient to divide the integration
) - -<
3 4 t &

k i 3

— ——t -
——t &

—m.—: L P—-‘J— ya

' J
(b) ©

Fiaure 3

over £, and ¢, into two parts, one part arising from the region in whioh ¢, > ¢, and the
other from the region in which ¢, <¢,. Substituting for § from (21) and for ¥+, ¥+,
from (18), we have for the first part of the integral

E] unoos.
i) E L, ettt )dxdx
[, )~ wis o[ anf"
xoxp (alt ) +5 B+ B B Byl (Buct By = By )| TuriTaty

IDE‘ “‘%W- (km |v|np) (np{v
=3 T tmnp- (E,,+E - B — B+ 2iha) (B, + B, — E;—

T, +iha) TeNimlp  (36)

where (km | v|np) = fu,,(x)u,(x’) Y(X — X")un(X) Uy (x’) dxdx’. (36)

A similar evaluation of the second part of the integral gives
1 9g0- unogo. (km | v| np) (np | v| ) ==
82, & Byt By~ B+ i) (By + By — By = B, + ) 16T s

The similarity of these results to the terms of the ordinary perturbation series is at
once recognizable,

)
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The two terms (33) and (37) may be represented dmgr&mmancany a8 in
figures 3(b), (c); these diagrams are obtained from (a) by arranging ¢, and bin
particular orders and labelling the lines rather than the vertices. Figure 3(t)
ropresonts o process in which two particles in states 4 and j interact and scatter into
states n and p, and re-interact and scatter into states m and k; thus the wholy
Pprocess is a scattering of particles out of the states ¢ arid j into the states k and m vis
the intermediate state », p. Similarly, figure 3(c) rep & procees in which two
particles scatter themselves into states. k and m leaving holes in the states n and p
into which the two particles in states ¢ and j then scatter themselves; thus the final
state is the same in both cases but the intermediate state is different. It will be scen
that in each case the expressions (36) and (37) contain in their denominators the
difference in energy of the final and initial state and the difference in energy of tho
initial and intermediate state.

These results are quite general. Any of thei i
8,(0) can be evaluated by the above method, and leads to a series of terms of lho
form of (35) which can be interpreted as representing certain physical processes with
the help of diagrams of the type of figures 3 (), (). In each case the denominators of
the expression will contain the difference in energy of the final and initial state and
the differences in energy between the initial and intermediate states.

‘We can now make certain deductions from these results. The first thing to notice
is that if an expression of the form of (35) arises from a linked diagram, and in view
of the results of the preceding section we need only considey such diagrams, then

none of the i diate states can coincide with the initial state. Since the latter
ha.s been d to be d it follows that the energy of none of the
4 diate states can coincide with that of the initial state. If, further, the final

_state s different from the initial state, as it is in all the ternis contributing to $7,(0),"
then the energy of the final state will be different from that of the initial state, Thus,
in the case of terms contributing to S7,(0), none of the energy differences in the
denominators is zero; it follows at once (see (35)) that each of these terms is con-
tinuous as @-> +0, and that S7.(0) is continuous &-» +0. Thus limS7,(0) as
> +0 exists, and may be evaluated putting « = 0 at the beginning of the
calculation,

The situation with $(0) is different, however. In the case of terms contributing
to SP.(0rthe initial and final states coincide (although the i diate states are
different from the initial state), and the cor ding energy diff vanishes
giving rise to a factor @ in the d i Thus S§,(0) diverges like 1/xasa—> +0.

‘We should now like to consider the caleulntxon of the energy shift AE. This is
given by (3). It may, h ', be more lculated using a formula

given by Gell-Mann & Low; it is shown in an appendxx that it can be derived from
S%’,(oo), and is given by the following prescription: write down the sum of of
integrals contributing to SP,(c0) (one from each vacuum diagram); introduce inio the
integrand of each of these integrals a factor i%id(t,) and put o = 0; the resulling sum
gives AE.

In the remainder of this paper we shall devote our attention to the caloulation of
AE.
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5. THE UNIFORM GAS CASE

The theory of the preceding sections was general in the sense that H, was supposed
toinclude not only the kinetio energy of the particles but also their potential energy
in an external field. In the remaining seotions of this paper we shall for simplicity
restrict ourselves to the case in which the external field is constant and the particles
form & uniform gas; it is hoped to deal with the general case later.

In the case of a uniform gas it is convenient to resolve the H’ of (8) into two parts.
Suppose the Fourier transform of v is

o(x) = Tu(k)e (38)
Then we split v into two parts according to
o(x) = Zull) o5 +u(0) = v +u(0). (39)
We can correspondingly write H’ in the form
= 3 [T = X F ) PRI dx X+ V0~ $V0) (40)

snd include the last two (constant) terms in H,. All the above theory then goes
through as before except that vis replaced by v everywheu The potential v’ has the
ugeful property

fv’(x—x’) dx’ = 0. (41)
We can now make an imp deducti ing the p bation series in
the case of a uniform gas. This is that in the case of a unifc hose di which

contasn a part which is atiached to the rest of the diagram by mdya single ¢ ml.emam line
give no contribution S,(t) or any derived quantities. To prove this let us consider the
contribution of a diagram of the type shown in figure 4(a), where the two parts I"
and I'” are connected by only the single interaction line shown. If in the integral

ing the ibution of this di we perform all the integrations except
thoae over X and X', we must obtain an expression of the form

f Fx)v'(x—x') O(x’) dxdx’. (42)

However, since the gas is uniform and has no natural origin of co-ordinates, ' and ¢
must be independent of x and x’, so that it reduces to an integral over v'(x ~X')
which must vanish by virtue of (41). Thus we can omit all diagrams of this type.

In future we shall drop the prime on ¢', it being always understood that we are
working with v’

6. THE ELIMINATION OF POLARIZATION PARTS

As pointed out in the introduection, the main point of introducing the diagram-
matio analysis in the present theory is that it enables us easily to recognize those
parts of the perturbation series whioh represent polarization effects. We are now in
a position to investigate this. .
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Let us consider the physical interpretation of the subdiagram shown in tigure 4.
The net effect of this subdiagram is that the two incoming particles scatter off each
other, not through the ordinary direct interaction but via a closed particle loop.
More generally, the subdiagram shown in figure 4(c), where the circle is meant to
represent some set of closed puticle loops and interaction lines connected to the rest
of the diagram by only the two i ion lines shown, rep the scattering of
two particles through some more complicated process which, however, returns af}
the particles involved to their original states. Our hypothesis, which will be borne

out by further caloulation, is that these subdi the polari
effect referred to in the i duction, and that they can be elnmnnted from the
perturbation series by replacing the ordinary i ion by a modified interaction,

OrlD ik
yO-L G

FIGURE 4

The way in which such subdi can be eliminated from the p batic
series is already familiar in quantum electrodynamics, being exactly analogous to
the elimination of photon self-energy parts (Dyson 1949). Let I' be some structure.
Then it may or may not be that I" contains some polarization part, i.e. some con-
nected part without external lines attached to the rest of the structure by only two
interaction lines; in the former case we shall say that I'is (polarization) reducible, in
the latter case that I'is irreducible. It is obvious that we can obtain all reducible

by polarization parts in place of interaction lines in irreducible
structutes.

Letus ider as an lo the di: shown in figure 4 (b), rega!dmg this now
a8 a comp]ete diagram rather than as a subdiagram of some larger diagram. This is
a ibuting to S7(t), obtainable from the irreducible diagram
shown in figure 4 (d) by aubehtuting the polarization part shown in figure 6(a) forits

tion line, The ibutions to Sz(¢) of the diagrams of figures 4 (b), (d) are

211(211‘ f d’lfd”xj day [ dejote, ~f) iy =)

x %(”x) Yr(@y) T (i) ¥+ (@a) S(at, 29) S(zpeal) (43
) [ [ - P P o

and
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It will bo seen that (43) is obtainable from (44) (apart from an unimportant change
in the integration variable) by:
(i) multiplying by 1!/2!, the ratio of the factorials of the orders of the diagrams;
(ii) by replacing v(z—z') in (44) by the quantity

(]
g 4] & o= 2) ot ) Ste, ) 81, 2) (4s)

which is just the contribution to (43) of the interaction and particle lines of the
polarization part of figure 6 (a) with the integrations at the vertices performed. This
result is typ:cal the ik of a reducible di is the same as that of the
ducible diag except that the v's are replaced by functions of
the type (45) corresponding to the various polarization parts which have been
inserted in place of interaction lines, and the whole integral has been multiplied by
the ratio of the factorials of the orders. .
We cn.n enunciate this result more precisely as follows. If G is a reducible dmgnm
btained by substituting the polarizati partl"' x‘or the interaction line 2, }, I';, for
1,2}, ete., of the irred cible di @' (introducing the i th&tlft.he fine
7 of @ is left unchanged we say it has 'been replued by the polarization part I'),
then

8,6) = %sa, G5 WATL), WAL, o), (46)

where % and »' are the orders of G and &, 8(t, G'; W (I3,), W (I;,), ...) means that
integral for S(¢, G') with the v(z,—a}) replaced by the functions W} (27, z,, I';,), and
W{(«', 2, I'") is the expression which arises from the polarization part I" in the same
way that (45) arises from the polarization part of figure 6 (a), remembering that in
the case of the special polarization part I"o this is just u(a: '),

Let I be a reducible structure it g to Sz(t), i.e. with external lines. Then
it can be seen that I" arises from some unique m-edumb]e structure I, Consider the
total contribution to Sz(t) of all the diagrams with structures which reduce to
sgiven irreducibl I". Astraightforward counting of diagrams shows now
that this total contribution is given by the expression

12"
ST B SO L), TLL), ), “n)
where the sums run over all polmzntlon parts and
W', 2, ") = 7,—) W, &\, I), (48)

where g(I") is the g factor of the polarization part I, defined to be the number of
permutations of the internal interaction lines of I which take it into itself (these
¢ factors are exactly analogous to those of §3), and m is its order, defined to be the
number of inlernal interaction lines of I plus one,

Since S(t,&; W(I,), W(Ty,), -..) depends linearly upon the W(I}) we can write
47
) s STV, (49)
using (25), where Hla' ) = ;} W', 2, Iy). (60)
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Thus, we see that the contribution to S(¢) of all diagrams reducing to the structupy
I can be oxprossed in terms of the contribution of the class I" by roplacing v every.
where by ¥ Since every diagram contributing to S,(¢) is uniquely reducible, we
see that S.(f) can be expressed as a sum over contributions from irreducible
diagrams by replacing v by ¥ in all the integrals. Thus ¥; plays the part of 5

modified interaction. In ordeér to caloulate the p bed wave function we shalj
be interested in ¥4,

‘We haveshown above how the perturbation series for the perturbed wave function
can be d by introducing & modified i ion. Let us now consider the

perturbation series for the energy shift A%. This has been expressed as a sum over
vaouum diagrams in §4. We could proceed as above and reduce this to a sum over
ible vaouum diag by replacing v everywhere by ¥z, (since the time
mtzegrauom run up tot = coin the case of AE) except for one feature. Whereas every
ibuting to S7() is uniquely reducible, this is not true for vaouum
diagrams in general. For example, thie diagram shown in figure 5(a) could be reduced
to either of the diagrams shown in figures 5(b) or (c) by regarding either the right
hand or the left hand part as the polarization part.

00

Froure &

The fact that the reduction may not be unique can be'overcome by demanding
that every vacuum diagram be reduced in such a way that the point z, remain in the
irreducible residue; any vacuum reducible diagram can always be reduced in this
way provided that it contains no part which is connected to the rest of the diagram
by only a single interaction line, and we have shown in the preceding section that
such di s can be omitted. Furtl itis 'y to reduce the diagrams
ocontributing to AZ in this way, otherwise the factor i%4(¢,) would appear in some
polarization part and spoil the theory.

Taking this point into account, we find by counting diagrams that the total

ibution to A of all di ‘which reduce to a given irreducible structure I”is

S B e ARG WD), D)) )
Y £ 50y @A e Tl el
where G' is a typical diagram with the structure I and n, is the order of the polariza-
tion part I}, Because of the factor (n’+n,, +7,,+...)™*, we cannot perform the sum
in the mmple way we did in (47). However, we notice that if we regard the
interaction v as being linearly proportional to some li A, then
AB(G'; Wo(Ty,), Wa(T3,), ...) varies as Av+attot, Thus wo oan write (61)es

AdA2n n'l v,
J' AT B! A8 @ PulT) Wl ) 2
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We can now perform the sum as we did in (47) and obtain

AdA 2Vl ,
ARG ;Y Vo oo )s 53]
[ wam ) #3)
enabling us to express A as a sum overirreducible diagrams. In this case we replace
by ¥% (Which will be written ¥~ for short in future); it is this quantity ¥;, that we
regard as the real modified intersotion rather than the more general ¥;, since in the
calculation of all observable quantities, such as AF, ¥, will turn up rather than ¥
B

7. AN INTEGRAL EQUATION FOR ¥~

In the preceding section we have introduced the modified interaction and
expressed it in terms of an infinite series. In this section we should like to consider

some of its properties.
(5)
= @
DO
()

F1oURE 6

We first notice that in the case of a uniform gas ¥"(2', z) is a function of z —z’ only.
Forso far as the space co-ordinates are concerned it can only be a function of x — x’
because of the spatial homogeneity of the system. Also each of the integrals in the
series for ¥~ (equation (50) with ¢ = 00) is an integral whose time integrations run
from —o0 to +co and whose integrands are products of factors each of which
depends only upon time differences (see e.g. (45)); consequently ¥7(z',z) can
depend only upon #' ~¢, and is therefore a function of '~ 2. It should further be
noticed that there is no reason why ¥"should vanish when ¢+, so that the modi-
fied interaction ¥~ will not in general be an instantaneous interaction like v but asort
of retarded interaction.

‘We shall now see how we can set up an integral equation for " which will enable
us Lo express it in terms of a series more rapidly convergent than (50). Let I"be any
polarization struoture. Then it may or may not be that I" consists of two or more

parts which are only d by sing]e i tion lines. In the first case we shall
ny cha,t I‘ia ani per polari m the latter case that it is a proper
For le, the polari hown in figure 6 (a)

is a proper stx-ucture whilst tha.c shown in ﬁg\n‘e 8(b) is an improper one.
Let I"be some improp Then I'" can be uniquely resolved

ag shown in figure 6(a) mto & proper struoture " and some other polarization
I, properorimp Let usintrod follows th W(z',2,I)
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related to I¥,(I") (to be written W(I') for brevity in future). It will be seen from the

prescription of the provious soction for W(I) that it can be written in the form
W', z,I") nfv(x'—-x’) W(z*,z", I v(&" — z) dz"d2”, (64)

the two v’s being those cortespondmg to the two outgoing lines of the polarizatiop

tr and W g the ibuti from all the internal interaction and
particle lines with the pri t i d. For ple, in the case
of the polarization part shown in ﬁgure 8(a) (see 4s) W w\ll be

W', x) = iTS(«:’,:;)S(«,::’ ). (66)

We can now prove that the ibution of the polarization part resolved as in
figure 6(c) can be written

W'z, T) = |o(z' —z,) W@y, 24, ") vy~ 23) W (@3, 2o I") v(2, — %) 4%, A2y, dz,,
(60)
If we introduce the quantity 0
W', 2, ") = J.v(x' —2") W(2",z,I")dz", (67)

‘we can write (56) as
W', 2, I) = j W', 2", ") Wia", 2, ") da". (58)

Let us now consider the contribution to ¥~ of all those improper polarization
structures which give rise to a. ngen proper structure I when resolved as in
figure 6 (c). This is evidently ob d by ing over all I apart from
I‘,, on the right-band side of (68), and is given by

i e, I PR IE )
If we add to this the contribution of I luelfto ¥, which from (64) and (67) is
given by
e o - aya, e
‘we obtain

fW‘(a:', 2", ) [v(a" —2') + rzr W', 2, I")]dz" = f W', 2", I") ¥ (2", z)dz" (61)
2

for the total contribution to ¥~ of the proper d I" and all the i per ones
‘which give I'" on resolution. To obtain ¥~ we now have to sum this expression overall
proper polarization parts I and add the ik of the polarization part Iy
‘which is just v(z—2z'). Defining
Ve = % W a T, )
rer,

we have Y (@', %) = v(z' —z)+ f V', ")V (&7, ) da”. (63)
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Thue we have derived an integral equation which gives ¥ in terms of ¥"*. This is
desirable because the series (62) is very much more rapidly convergent than (50).
The solution of (63) y no parti difficulty in the uniform gas because all
the quantities involved depend upon the d:ﬁ'orenoes in their arguments and the
equation may be solved by Fourier transformation.

We should like to complete this section with a on the physical int
tation of the result (62). The modified interaction between two p&ruoles um be
regarded as a superposition of their direot interaction and the interaction of each
with the polarization field of the other. These two interactions are represented by the
first and second terms on the right-hand side of (62). The polarization produced at
any point by one of the particles depends, however, not upon the direot field of the
particle at that point, but upon the modified field; this is represented in (63) by the
dependence of the second term upon ¥’, ¥ *(2', ") representing the field at z’ due to
tho polarization at the point z*.

8. AN EXPRESSION FOR AZ IN TERMS OF V
We have seen in §6 how AE can be expressed as a sum of terms corresponding to
ireducible vacuum diagrams. Our result can be written

trreduciblo
vacuum 2 g\

AR = z —n(G) AE(@), (64)

where (@) is the order of G and AE,(G) means the contribution of the diagram @ to
AE with v replaced everywhere by ¥".

Suppose now. that @ is some irreducible vacuum diagram. If we break the
interaction line z, ], the diagram may or may not fall into two separate parts. If it
does, then it is of the form shown in Figure 4 (a), and we:have seen in §5 that such
diagrams give no contribution. If it does not, then breaking this interaction line
leads to some proper irreducible polarization part I" (since G was assumed to be
irreducible).

It can now be proved that if on breaking the line z, z] in the diagram @ we obtain
the polarization part I', then

AE,@) = J' dz, f dzj3H8(t) ¥ (2~ 2]) iK(z,,z;.nn-(T’;’)ilI—;l,w,. )

where W,(2’,,I") is the same as ¥ (z’,z, I') except that v has been replaced every-
where by ¥,
If we subsm.ute (05) into (64), our sum over diagrams reduces to a sum over
ducibl es, each structure being counted a certain number
of times. Counemg of diagrams shows that this sum reduces to

1AdA . , h'ndunlbu .
AB =} J‘ = J' da, j Wi =) Rl (69)
Defining the quantity
_ trrodusible propar
Fa)= ¥ Wznl= 3 Wa,al), (67)
Toly Taly
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we see that (68) can be written
1%dA s ,
AF = 3 [" [am fasihote) P ) ¥ (0] 2. ™
The quantity 7 is closely related to ¥". We have in fact (67), (62) and (67)
o) = [Pl ol ), )

and ¥ is related to ¥"* by (62); thus (68)isin effect an expression for AE in terms
of ¥, Using the result (68), we obtain the expression

B B0+ 000+ [ [ 050000 ¥ 0 ) Ptz 0

for the energy of a uniform interacting gas, where the E, are those of equation (10).
In the case of a uniform gas the first term of (70) is just the kinetio energy of the

icles in the pied states together with their p ial energy in any constant
bwkgronnd potential which is ptesent

9. SUMMARY OF RESULTS
In this paper the following results have been obtained.
(i) It has been shown how the perturbation series for the many-body problem
may be expressed as a sum of terms each of which is associated with a certain

diagram.

(ii) This has been reduced to & series of terms (linked-cluster expansion) corre-
sponding to linked diagrams.

(iii) A series hasbeen obtained for th gy shift AZ due to theint fon, each

term of which is associated with a certain ‘vacuum’ diagram.

(iv) In the case of a uniform gas it has been shown that some of the terms of this
series give no contribution and may be oxmtted

(v) Thmseneshasbeenreduced‘ ducible vacuum di i.e.over

no polarization parts, by introducing & modified i ion 7°

in place of the ordinary interaction v. An infinite series has been given for 7",

(vi) An integral equation has been obtained for ¥” in terms of a quantity »°*
which is given by an infinite series much more rapidly convergent than that for ¥°,

(vii) Finally, the energy shift and the energy of the whole system have beea
expressed in terms of the modified interaction ¥; the latter is calculated from the
integral equation the rapid], g ries for 7°* replaces the original perturba-
tion series.

In a later paper these results will be applied to calculate the correlation energy of
a free-electron gas, and it-will be shown that essentially the same results as thosoud
Bohm & Pines (1953) can be obtained by taking only the first term of the serics fo
¥7* and making allowance for certain exohange terms.

"Phe author wishes to express his thanks to Dr J. S. Bell for much helpful adviee
and oriticism.
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ArPENDIX. THE OALCULATION OF AE

To caloulate AX we start from a formula given by Gell-Mann & Low (1951),
namely

AE = lim M——ln(‘l’,[ﬂ,(o )| o), (A1)
where A is the coupling of the int ion. Using the same method as
Gell-Mann & Low we can also derive the formula

AR = — lim ifad 2 1n (¥, | 8530, 0)| ¥o. a2

asi0  OA
Furthermore, we have
84(00, —00) = 8,(c0, 0) 5,(0, —0), (A3)
from which 877(00,0) = 8,(0, —0) S5}(c0, ~c0) (Ad)

It was shown in §3 that
8,(00, —00) W = exp {SL(c0) +8za(00)} . (AB)
Since ¥, is non-degenerate and iS,(c0, —o0) connects only states with the same
energy in the limit as &> + 0, we see that S7,(00, —0)—>0 as & +0. From (A1),
(A2), (A4) and (A 5) we have
AF = lim —ifiak 1 (%o | 8,(0) (0P Sz} exp {0} | %)
=-.1jrgo—m a0n (Yol S:(0)'¥0) ~ 52 (e0)]
T 2
= -AE+olin:°M5Xé}‘1(co). (A8)

Thus AE =} lim M%sy;(m). (A7)
-—>+0
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Now S, (00) is a sum of terms corresponding to vacuum diagrams. When all the
integrations in an nth order diagram except those over t,,ty, ..., ¢, have been per.
formed, we shall have an expression of the form

'|' ar, ...fdz, Uulta tar o) (g

‘We can split this up into #! terms by making different time orderings. In each of
these terms we can perform the time integrations in any partioular order; let us
agree to always perform the integration over ¢, last. When we have performed all the
irrtegrations apart from that over ¢, in any term we end up with an expreesion of the
form
f° d;‘e-d‘.lﬂm,Me-(n-mll.l-ln.+0(1), (AO)

where the factor exp{—a|t; | +iEt,} arises from the corresponding factor in U, sud
the aerm exp{ (n-1)a g, | —IEI,) ariges from the performance of the remaining
in (A 9) gives 2 [na + O(1). The operation
/\(d/d/\) on the eonmbutlon t0 S, (c0) of an nth order term just multiplies it by ».
Thus the contribution of the term (A 9) to AF is just

lim 3ifan [—+oa)} M. (A19)
ar+0
Let us now compare this result with
J7 e anime) Uttt @an)
I

which arises from (A 8) by inserting a factor i%4(¢,) into the integrand and putting
a = 0, If we evaluate this by splitting it into terms with different time orderings and
perform the integration over ¢, last, we find that the term which corresponds to
(A 9) is when all the integrations except that over ¢, have been performed

J' ® dt,ifd(e,) Me'ma-iEy - M, @12
-

which agrees with (A 11), the terms written O(1) in (A 9) disappearing when a = 0.
Thus the insertion of a factor i%d(¢;) into the integrand of (A 8) and putting & = Ohas
the same effect as operating with i%A(d/dA)x and taking the limit as ¢~» +0. Thus
we obtain the prescription of §4.
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