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1. Introduction

THE paradox of Einstein, Podolsky and Rosen (1] was advanced as an argument that quantum mechanics
could not be a complete theory but should be supplemented by additional varisbles. These additional van-
ables were 10 restore to the theory causality and locality {21, In this note that idea will be formuluted
mathematicaily and shown to be incompatible with the statistical predictions of quantum mechanics. It is
the requirement of locality, or more preciscly that the result of u measurement on one system be unaffcctcd

trv_gcratlons on, a distant system_with which 1t has interacted, in lhc past, ‘thut creates the cssential dof-

hculx) There huve been sttempts [3] to show that even without such & sopm.ahxhty or l(,c.s!m tequire-
rent no '‘hidden variable” interpretation of quantum mechanics is possible. These attempts have been
examined elsewhere [4] and found wanting. Morcover, o hidden variable interpretation of elementary quan-
tum theory {S] has been explicitly constructed. That particular interpretation has indeed a groxsly non-
local structure. This is characteristic, according to the tesult 19 be proved here, of any such theory which,

rcprodu( s exactly the _Quantum mechmxcal prcaxctxon-;

II. Formulation

With the example advocated by Bohm and Ahuronov [6], the EPR arpument is the following. Consider
3 pair of spin onec-half partictes formed somehow in the singlet spin state and moving [reely in opposate
directions. Measurements can be made, say by Stem-Gerlach magnets, on selected components of the
spins , and &,. If mcasurement of the component ¢, - &, where & is some unit vector, yields the value
- 1 then, according to quantum mechanics, measurement of - % must yield the value -1 and vice versa.
Now we make the hypothesis [ 2], and it seems one at least worth considering, that if the two measure-
neats are made at places remple from onc anothes the ortentation of one magnet does not influence the
result obtained with the other™ Since we can predict in advance the result of measuring any chosen compo-
neat of G,, by previously measuring the samg compunent of ¢, it follows that the tesuit of any such
measurement must actually be prc:determmec:l6 Since the initis! quantum mechanical wave function does not
detetmine the result of sn individual meaxurement, this predetermination smplies the possability of a more
complete specification of the state.

Let this mote complete specification be effected by meuns of parameters A. [t is a matter of indiffe:-
ence in the following whether A denotes a single vurniable or a set, or even a sct of functions, wd whether
the vatiables are discrete or continuous. However, we write as if A were a single continuous p.n.nr(.'lcr.
The rexult A of meusuring 7, -3 is then determined by & and A, and the tesult B of measuring o 5 b in the
same instance is determined by 4 and A, snd
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Ala, Ay 1, BB N - 21, (1

The vital assumption {2} 1s that the result B for pasticle 2 does not depend on the setting g, of the magnet
TS G . =

If p A 1% the pmbabxlltv distribution of A then the expectation value of the product of the two com-
ponents a, . and u b is

Pia. B .fup(,\w.;. A B8 2

4]
This should equal the quuntum mechimical expectution value, which for the singlet state is

- - . .

,
E A SN (3

But 1t will be shown that this is nat possible.

Some might prefer a formulation in which the hidden varisbles fall into two scts, with A dependent on
one and B on the other; this possibility is contained in the sbove, since A stands for any number of vari.
ables and the dependences theteon of A and B sre unrestricted. In a complete physical theory of the
type envisaged by Einstein, the hidden variables would have dynumicul significance und laws of motion;
our A can then be thought of us tnitisl values of these variables at some suitable instant.

111, llustration

The proof of the main result 1s quite simple. Before giving it, however, a number of illustrations may
serve to put it in perspective,

Firstly, there is no difficulty in giving a hidden variable account of spin measurements on u single
patticle. Suppose we have u spin half particle in a pure spin state with polarization denoted by a unit
vector p. Let the htddcn variable be (for example) a unit vectos A with uniform pxobabxh(y distribution
over the hemisphere A- -p -0, Specify that the result of measurement of a component o - a is

sign A-a’ {4

whete 9 is a unit vector depending on » and p in a way to be specified, und the sign function is'o 1 ot
-1 according to the sign of its argument. Actually this leaves the result undetermined when A - 4 - o,
but as the probability of this is zero we will not muke special prescriptions for it.  Averaging over A the
expectstion vulue is

g a -1 - 289, Q]
where ' is the angle between ' and p. Suppose then that &' ix obtained from a by rotation towards P
until

1 - —0 = cos ¢ (6

-
o

where 0 is the angle between 3 and p. Then we have the desired result

<o-a=-cosh 7

So in this simple casc there is no difficulty in the view that the result of every measurement is detemaned

by the value of un extru vanable, and that the statistical features of quantum mechunics arise becausc
. value of this vatiable is unknown in individual inxtances.
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Secondly, there is no difficulty in reproducing, in the form (2), the only features of (3) commonly used
in vecbal discussions of this problem:

P{a, a) - - P(a, -3 - -1
P B -0ifa-6-0 )

(8)

For exumple, let A now be unit vector A, with uniform probability distribution over ull directions, and tuke

B(a b - -sign 5-X
This gives
o . 2
Pa, H . -1. < 8, (10)

-
iy

wheee @ is the angle between 8 and b, and (10) hux the properties (8). For compasison, consgider the re-
sult of a modificd theory (6] in which the pute singlet state is replaced in the course of time by an iso-
tropic mixture of product states; this gives the correlution function

_;-}:-3 (1)

It is probubly less easy, experimentally, to distinguish (10) from (3), than (11) from (3).
Unlike (3), the function (10) is not statioanary at the minimum value - 1(at 6 - 0). It will be seen
that thig is charactenstic of functions of type (2).

Thirdly, and finally, there is no difficulty in teproducing the quantum mechanical correlation (3) if the
tesults A and B in (2) are allowed to depend on % and a respectively as well as on & and B. For ex-
ample, replace & in (9) by 4, obtained from & by rotation towards B unul

2

1-20"-cosh,
n

where ' is the angle between a' and §. However, for given values of the hidden variables, the results

of measurements with one magnet now depend on the setting of the distant magnet, which ix just what we
would wish to avoid.

IV. Contradiction

The main result will now be proved. Because p iz a normalized probability distribution,
fdAp()\) -1, (12)
and because of the propertics (1), P in (2) cannot be less than - 1. It can reach -1 at a-b only if
Aa, D) - -B(&, A (13)
except at @ set of points A of zero probability. Assuming this, (2) cen be rewritten

P(s, B - -_/:mpm A3, A) ALB, A). (14)
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It follows that ¢ ix another unit vector
P(a b -P(3. & - -ﬁl\p(.\) [Aa. A) ACB, A - A3, A) A, A)
-ﬁapm A(a, A AL, A (A48, ) ALE, A -1
using (1), whence
"Pla. 8) -P(a, O] E‘/:l)\p(n\) (1- A N AG W)
The second teem on the nght 1s P (8, &), whence
1. P3Oz Plad) - Pla d) (15)

Unless P is constant, the right hand side is in general of order  B-¢ | for small |6-3|. Thus P(3, &)
cannot be stationary ut the minimum value (-1 at & - ¢) and cannot cqual the quantum mechanical
value (3).

Nor can the quantum mechanicul correlation (3) be arbitrarily closcly approximated by the form (2).
The formal proof of this may be set out as follows. We would not worry about failure of the approximation
at isolated points, 80 let us consider instead of (2) and (3) the functions

-

P(3. 3 and -a- 5

where the bar denotes independent averaging of Pla; 8') and -a' - b over vectors a' and B’ within spec:
ified small angles of 2 and 5. Suppose that for all & and & the difference is bounded by ¢

P8 v 881 S (16)

Then it will be shown that ¢ cunnot be made arbitrarily small.
Suppose that fotr all 2 and b

la-B-5-8]56 an
Then from (16)
P& B -a-6.5c+ 8 as:
From (2)
P(a & -/:!Ap(A) A(3, N B(B, ) (19)
where
"AB, A £ 1 and |BB A <1 (20}
From (18) and (19), with a = 8,
dApiN [AGB. N BB A - 1) S¢+ b @n

From (19)
PGB - PG O -/;Apm [A(a, A) BB, D) - 4¢a, 2 B(E, A)]
-_/:npm A3, 2 BiB, N 11+ A6, M) B(E, A))
-/;Ap(A) A3, N B(, N1+ A, 2) BG, »)
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Using (20) then
PG, B) Pl & iﬁAx(,\l[l . A(B, &) BIC, Al
.ﬁ,\pmn . A, 0 BB, N
Thea using (19) and 21)
PGB - PO 1P -8
Finally, using (18),
A e dc b -2 B E1 =8 2 B
or
e - B _ja-c-a-6 6521 (22)
Take fos example a-¢ - 0, a- 6 - 6. ¢ 1/v2  Then
4 512 -

Therefore, for small fimte &, + cannot be arbitrunly small.
Thus, the quantum mechanical expectation value cannot be represented, either accurately or arbitear-
ily ¢closely. in the form (2).

V. Generalization

The example considered above has the advantage that it tequires little imagination to envisage the
measurcments involved actually being made. In a more formal wuy, assuming [7] that any Hermitian oper-
ator with u complete set of eigenstates is an ‘‘observable”, the result is easily extended to other systems.
If the two systems have state spaces of dimensionality greater than 2 we can always consider two dimen-
sional subspaces and define, in their direct product, opetators 3, und 3, formally analogous to those
used above and which are zero for states outside the product subspace. Then for at loast one quantum
mechanical state. the “‘singlet’’ state in the combined subspaces, the statistical predictions of quantum
mechanics are incompatible with separable predetermination.

VI. Conclusion

In a theory 1n which parameters are added to quantum mechanics to detcrmipe the results of andividus!
measurcments, withoul Changing the statistical predictions, there must be 8 mechanism whereby the set-
mtm‘asun_g_evuce can Influeace the reading of anoth___m;;mmm; _however zemote. Moreover,
The signal involved must propagate instantaneously. o that such a theoty could not be Lorentz invariant.

Of course, the situation is different if the quantum mcchmlcalmwmmm
Conceivably they might apply only to experiments in which the settings of the instruments are made suffi-
ciently in advance to allow them (o reach some mutual rapport by exchange of signals with velocity less
than or equal to that of light. In that connection, experiments of the type proposed by Bohm and Aharonov
[6]. in which the settings sre changed during the flight of the particles, are crucial.

I am indebted to Drs. M. Bander and J. K. Perring for very usclul discussions of this problem. The
first draft of the psper was written during a stay at Brandeis University, | am indebted to collcagues these
and at the University of Wisconsin foe their interest and hospitality.
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